

LA-UR-19-20238

Approved for public release; distribution is unlimited.

Title: Radiographic Detectors for DARHT and ECSE

Author(s): Mendez, Jacob

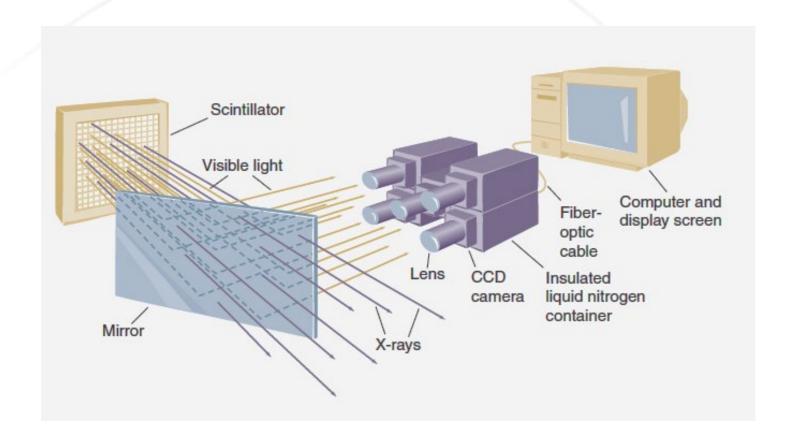
Intended for: General presentation for LANL staff.

Issued: 2019-01-14 (rev.1)

Radiographic Detectors for DARHT and ECSE

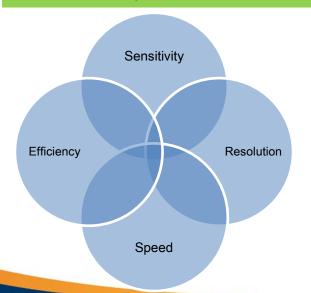
Jacob A. Mendez

J-4, Experiments and Diagnostics Group


Introduction

- Moderate to thick object radiographic detectors have been in use at LANL's DARHT facility for nearly two decades.
 - They serve as the primary diagnostic for gas cavity hydrodynamic experiments
 - Can reduce the design constraints of the source
 - Performance is dependent on the source and environmental characteristics
 - Bremsstrahlung target interactions
 - Bremsstrahlung energy spectrum
 - Scattered radiation
 - Temperature, humidity etc.
- The Scorpius detector design aims to improve the performance of existing detector designs.

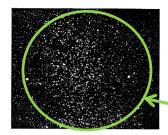
What is a Gamma Ray Camera?



The Los Alamos Gamma Ray Camera (GRC)

LANL GRC's are the largest, fastest, and most sensitive detectors in the world and are capable of capturing sub-millimeter resolution radiographic images through more than a foot of steel......

- ➤ Are a critical component of radiographic systems (Past, Present and Future)
- Offer unique capabilities for eXtreme imaging
- Offer world-class performance
- Combine resolution, speed, efficiency and sensitivity



Slide 4

Conceptual design uses, dose equivalent, detective quantum efficiency (DQE) as the primary design metric

nber of photons, 3×10³; high-light luminance (foot-lamberts), 10⁻⁶.

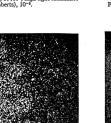
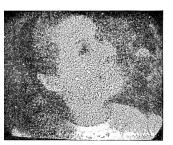



Fig. 2. Number of photons, 1.2×10⁴; high-light luminance (foot-lamberts), 4×10⁻⁸.

Number of photons, 9.3×10⁴; high-light luminance (foot-lamberts), 3×10⁻⁵.

Fig. 4. Number of photons, 7.6×10^s; high-light luminance (foot-lamberts), 2.5×10⁻⁴.

Number of photons, 3.6×10°; high-light lum nance (foot-lamberts), 1.2×10⁻³.

Fig. 6. Number of photons, 2.8×10⁷; high-light luminance (foot-lamberts), 9.5×10⁻³.

$$DQE(f) = \frac{SNR_{recorded}^{2}}{SNR_{incident}^{2}} = \frac{MTF(f)^{2}}{n NPS(f)} \propto \frac{1}{1 + \frac{1}{n}}$$

- DQE of primary photons is dominated by the xray to visible light converter (Scintillator)
- Film/Phosphors DQE~0.1%
- 4cm LSO GRC DQE ~40%
- Scintillator Density (7.4g/cc*)
- Scintillator Light Output (30k phot./MeV*)
- DQE of secondary photons is dominated by the
- visible optics of the system

 Efficient Light Transport $n = \frac{QE_{ccb}GM^2}{8n^2F^2(1+M)^2}$

Equivalent to dose, the DQE of the detector is a very important design consideration for any radiographic capability....

Radiographic System Design

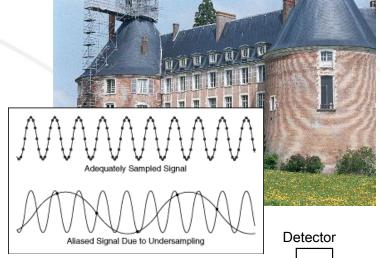
Key Design Variables and Limitations

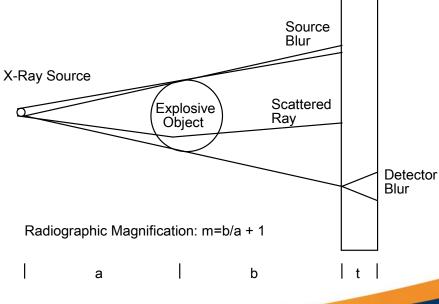
Object Resolution & Source Blur Magnification ➤ ∝

Source Geometry and Size ✓ Source Blur

Motion Blur Source Duration ➤ ∝

Object Velocity ➤ < **Motion Blur**

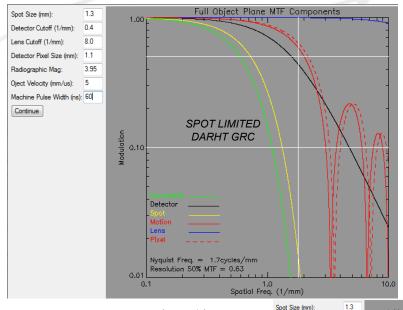

Detector Pixel Geometry (d_x,d_y,d_t) **Detector Blur**


- Aliasing Detector Pixel Size ➤ ∝
- Object feature size
- Magnification

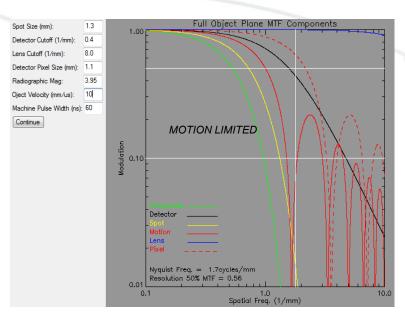
Scatter > ∝ **Object Density**

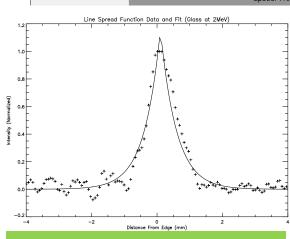
Biker Velocity=1.5 ft./sec

Aliasing

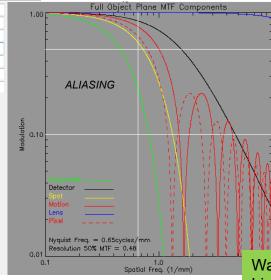


Shutter Duration=1 sec 1.5 ft. of blur @ Object


Radiographic Figure of Merit



Detector Cutoff (1/mm): Lens Cutoff (1/mm): Detector Pixel Size (mm): Radiographic Mag: Oject Velocity (mm/us):

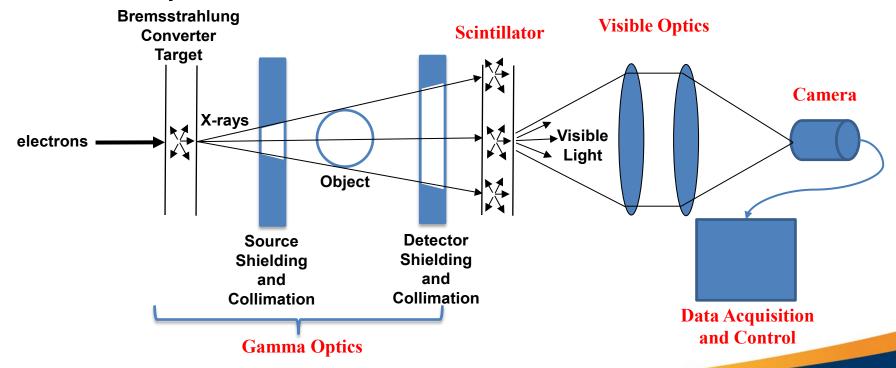

Machine Pulse Width (ns): 60

Continue



LANL developed radiation and optical modeling capabilities also inform system design

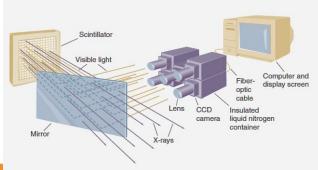
UNCLASSIFIED

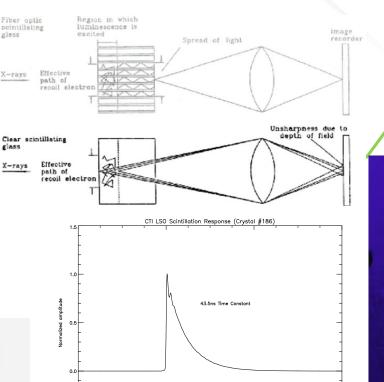


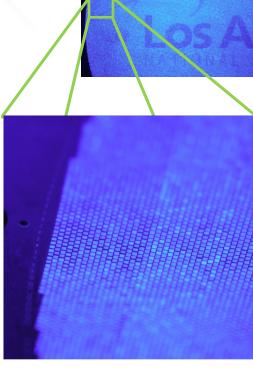
Watson S.A., "A Closed-Form, Fellget-Linfoot Radiographic Figure of Merit, internal LANL report, 1998

ECSE System Description

The scope of the detector begins with the conversion of high energy electrons to a Bremsstrahlung x-ray spectrum and ends with the conversion of these x-rays to visible light that is captured by multiframe CCD camera. Level 4 WBS elements of the Scorpius detector system are in red text.

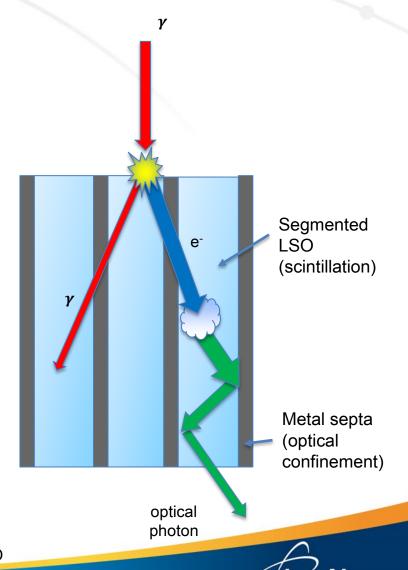





Lu₂SiO₅:Ce (LSO) Segmented Scintillator

- > 45 cm diameter, 1.1mm pitch, 4cm thick
- Focused
 - Reduced Parallax
- High Light Output
 - > 30,000 photons/MeV
- High Density
 - > 7.4 g/cc
 - High Conversion Efficiency
- Fast Decay
 - Single, 40nsec component
- Low Index of Refraction
 - Efficient Lens Coupling

DARHT uses the 3 largest segmented scintillators in the world



Efficiency of Film is 0.1%, while LSO is >40%

Advancing toward quantitative evaluation of all scintillator components, best configuration for Scorpius

- Polymer back-reflector:
 - Analytical models and data show a back-reflector can improve optical transport efficiency
 - Develop thin-film direct coatings on LSO for evaluation
- Metal septa and optical transport:
 - MCNP models suggest improvements going to high Z septa
 - Collaboration with XCP-3 to develop further MCNP and GEANT models, detailed laboratory characterizations
- Gamma Ray Sensitivity Optimization:
 - Further work required to understand potential impact of other proposed changes

Optimization of efficiency and quality of back-reflection

- An effective back-reflector ensures scintillation light re-directed toward the detector
 - Max. improvement 2x (ideal)
- Developing thin-layer deposition capability on LSO
- Evaluating commercial capabilities in the area.
- Detailed modeling and empirical characterization to be performed
 - GEANT and MCNP modeling
 - Meas. of efficiency vs. deposition location

unpolished polished LSO LSO

I. Usov and D. Vodnik, MST-7

Optical modeling can show how surface treatments would behave

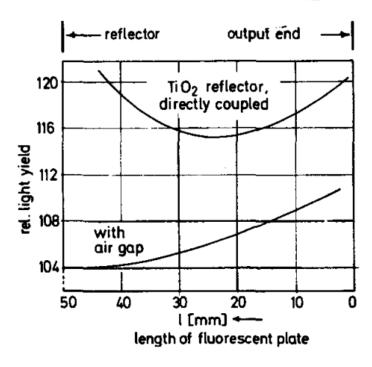
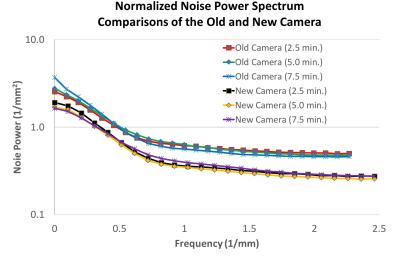
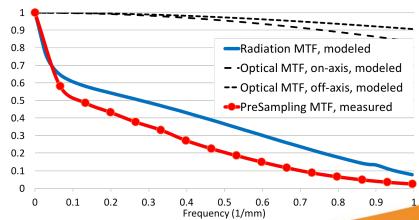


Fig. 9. Relative light collection yield for a directly coupled and an air-gap coupled diffuse TiO_2 reflector. Fluorescent body: rectangular plate of GG 17 glass (Schott); dimensions $50 \times 50 \times 2$ mm.

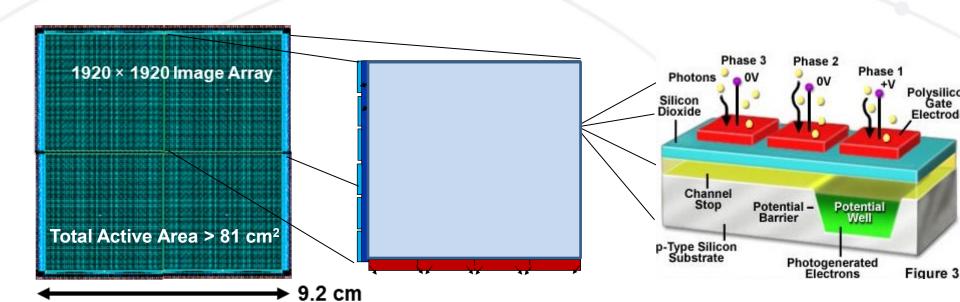

G. Keil, 1970


Updated NNPS and MTF, data and modeling for upgraded DARHT A1 camera

- Pre-sampling MTF represents a robust and meaningful metric for evaluating and comparing DARHTsimilar GRC designs
- Comparison to EGSnrc modeling at 1.25 MeV provides confidence in relevant estimates
 - blur, secondary radiation, scatter to direct response, pulse height distribution
- Noise improvements at higher spatial frequencies lead to significant improvements in high frequency DQE(f)

Modulation Transfer Function

New Camera, modeled and measured



J. Mendez, B. Tobias, et al., LA-UR-18-21779 and LA-UR-18-29908

A simpler, two phase Scorpius imager can benefit yield. Also allows larger active area for improved efficiency to secondary quanta.

- Dedicated Scorpius imager design effort underway at MIT-LL
 - High-Efficiency, High-Speed imager for thick objects (4 frames @5 Million Frames per Second)
 - Simulations are investigating charge collection/transfer speed, and CTE over a wide range of design variables.
- Next Generation DARHT Axis II imager design effort may provide additional capability and risk mitigation for Scorpius
 - High Speed, High-Frame Depth imager for thin objects (8 frames @ 4 Million Frames per Second)

DARHT camera design efforts meet some requirements but not all, prompting need for ASD specific design

Parameter	ASD (IOC)	ASD (FOC)	DARHT 2 (Existing CCID- 36)	DARHT 2 (CCID-91 Requirement)	Notes
Frame Rate (MHz)	2	5	2	4	
Number of Frames	2	4	4**	8 **	** Meets Objective
Inter-Frame Time (ns)	500	200	500*	250	*Meets Threshold
Pixel Size (µm)	≤48	≤48	96	48	
Active Area (cm ²)	>36	>36	25	36	
Dark Current (e-)	<5	<5	100	<5	
Frame Isolation	≥1000:1	≥1000:1	500:1	>1000:1	
Dynamic Range (bits)	≥16,000:1	≥16,000:1	16,000:1	16,000:1	
Read Noise (e) rms	≤3	≤3	5	3	
CCD Quantum Efficiency	≥80%	≥80%	55%	80%	

Optimization present opportunity for dramatic improvements in detector performance vs. DARHT benchmarks

- Potential for significant improvement in signal
 - Demonstrated improvement with new DARHT A1 lens
 - Improvement of back-reflection
 - Addition of index-matching at optical output
- Potential for significant improvement in signal to noise
 - Demonstrated improvement in DQE with new DARHT A1 CCD
 - Potential for additional improvement with optimization of the septal frame material

